A Comparative Analysis of RG-NIR and Multispectral Camera Imagery Acquired via Unmanned Aerial Vehicles for Sugarcane Crop Detection
Abstract
This study compares of two types of multispectral cameras, DJI Mavic 3M and MAPIR RGN, in assessing sugarcane health through reflectance analysis and vegetation indices. The research was conducted in a sugarcane plantation in Sidoarjo, East Java, using multispectral data captured by drones. The analysis evaluated the relationship between reflectance values, vegetation indices, and chlorophyll content in sugarcane. Results indicate that the MAPIR RGN camera outperformed the DJI Mavic 3M in measuring chlorophyll content. The Near Infrared (NIR) channel of MAPIR RGN showed the highest correlation with chlorophyll (r = 0.2166). Additionally, the Ratio Vegetation Index (RVI) from MAPIR RGN had the strongest correlation (r = 0.2716) among all vegetation indices. Conversely, the DJI Mavic 3M camera demonstrated weaker correlations across all reflectance channels and vegetation indices. These differences may stem from sensor sensitivity and the quality of data produced by each camera. Based on these findings, the MAPIR RGN camera is recommended for precision agriculture applications in sugarcane plantations, as it provides more accurate spectral data reflecting vegetation health. This study underscores the relevance of drone technology in enhancing the efficiency of sugarcane plantation management.
Keywords: Remote Sensing; Multispectral Camera; Drone/UAV; Precision Farming; Vegetation Index
DOI: http://dx.doi.org/10.23960/jpg.v13.i1.32315
Full Text:
PDFReferences
Álvarez-Mozos, J., Villanueva, J., Arias, M., & González-Audícana, M. (2021). Correlation Between NDVI and Sentinel-1 Derived Features for Maize. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 6773-6776. https://doi.org/10.1109/IGARSS47720.2021.9554099.
Andreas, R., Hofmann. (2023). Design and Development of Multi-copter Drone Incorporating with Multispectral Sensor for Agricultural Application. 215-226. doi: 10.1007/978-981-19-2358-6_21
Bagheri, N., & Kafashan, J. (2025). Appropriate vegetation indices and data analysis methods for orchards monitoring using UAV-based remote sensing: A comprehensive research. Computers and Electronics in Agriculture, 235(April), 110356. https://doi.org/10.1016/j.compag.2025.110356
Candiago, S., Remondino, F., Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote. Sens., 7, 4026-4047. https://doi.org/10.3390/rs70404026.
Damm, A., Cogliati, S., Colombo, R., Fritsche, L., Genangeli, A., Genesio, L., Hanus, J., Peressotti, A., Rademske, P., Rascher, U., Schuettemeyer, D., Siegmann, B., Sturm, J., & Miglietta, F. (2022). Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy. Remote Sensing of Environment, 273, 112957. https://doi.org/10.1016/j.rse.2022.112957
Das, A., Kumar, M., Kushwaha, A., Dave, R., Dakhore, K. K., Chaudhari, K., & Bhattacharya, B. K. (2023). Machine learning model ensemble for predicting sugarcane yield through synergy of optical and SAR remote sensing. Remote Sensing Applications: Society and Environment, 30(March), 100962. https://doi.org/10.1016/j.rsase.2023.100962
Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/J.ISPRSJPRS.2018.09.008.
Dimov, D., Uhl, J. H., Löw, F., & Seboka, G. N. (2022). Sugarcane yield estimation through remote sensing time series and phenology metrics. Smart Agricultural Technology, 2(December 2021), 100046. https://doi.org/10.1016/j.atech.2022.100046
Ebrahimy, H., Yu, T., & Zhang, Z. (2025). Developing a spatiotemporal fusion framework for generating daily UAV images in agricultural areas using publicly available satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 220, 413–427. https://doi.org/10.1016/j.isprsjprs.2024.12.024
Gao, S., Yan, K., Liu, J., Pu, J., Zou, D., Qi, J., Mu, X., & Yan, G. (2024). Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecological Indicators, 162(April), 112001. https://doi.org/10.1016/j.ecolind.2024.112001
Huang, S., Tang, L., Hupy, J., Wang, Y., & Shao, G. (2020). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research. https://doi.org/10.1007/s11676-020-01155-1.
Jay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210(May), 33–46. https://doi.org/10.1016/j.fcr.2017.05.005
Karongo, J., Mwaniki, J. I., Ndiritu, J., & Mokaya, V. (2025). Sorghum yield prediction based on remote sensing and machine learning in conflict affected South Sudan. Scientific Reports, 15(1), 1–16. https://doi.org/10.1038/s41598-025-89030-z
Khwantri, Saengprachatanarug., Chanreaksa, Chea., Jetsada, Posom., Kanda, Runapongsa, Saikaew. (2022). A Review on Innovation of Remote Sensing Technology Based on Unmanned Aerial Vehicle for Sugarcane Production in Tropical Region. New frontiers in regional science: Asian perspectives, 337-350. doi: 10.1007/978-981-19-0213-0_12
Mpakairi, K. S., Dube, T., Sibanda, M., & Mutanga, O. (2025). Leveraging remote sensing for optimised national scale agricultural water management in South Africa. Science of the Total Environment, 974(March), 179199. https://doi.org/10.1016/j.scitotenv.2025.179199
Narmilan, Amarasingam., Surantha, Salgadoe., Kevin, S., Powell., Luis, Felipe, Gonzalez., Sijesh, Natarajan. (2022). A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sensing Applications: Society and Environment, 26:100712-100712. doi: 10.1016/j.rsase.2022.100712
Narmilan, Amarasingam., Felipe, Gonzalez., Arachchige, Surantha, Ashan, Salgadoe., Unupen, Widanelage, Lahiru, Madhushanka, Kumarasiri., Hettiarachchige, Asiri, Sampageeth, Weerasinghe., Buddhika, Kulasekara. (2022). Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote sensing, 14(5):1140-1140. doi: 10.3390/rs14051140
Ochiai, S., Kamada, E., & Sugiura, R. (2024). Comparative analysis of RGB and multispectral UAV image data for leaf area index estimation of sweet potato. Smart Agricultural Technology, 9(September), 100579. https://doi.org/10.1016/j.atech.2024.100579
Orynbaikyzy, A., Gessner, U., & Conrad, C. (2019). Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 40(17), 6553–6595. https://doi.org/10.1080/01431161.2019.1569791
Olivetti, D., Cicerelli, R., Martinez, J., Almeida, T., Casari, R., Borges, H., & Roig, H. (2023). Comparing Unmanned Aerial Multispectral and Hyperspectral Imagery for Harmful Algal Bloom Monitoring in Artificial Ponds Used for Fish Farming. Drones. https://doi.org/10.3390/drones7070410.
P, Shanmugapriya., K.R., Latha., S., Pazhanivelan., R., Kumaraperumal., G., Karthikeyan., N., S., Sudarmanian. (2022). Spatial prediction of leaf chlorophyll content in cotton crop using drone-derived spectral indices. Current Science, 123(12):1473-1473. doi: 10.18520/cs/v123/i12/1473-1480
Pierre Pott, L., Jorge Carneiro Amado, T., Augusto Schwalbert, R., Mateus Corassa, G., & Antonio Ciampitti, I. (2022). Crop type classification in Southern Brazil: Integrating remote sensing, crop modeling and machine learning. Computers and Electronics in Agriculture, 201(April), 107320. https://doi.org/10.1016/j.compag.2022.107320
Pricope, N., Mapes, K., Woodward, K., Olsen, S., & Baxley, J. (2019). Multi-Sensor Assessment of the Effects of Varying Processing Parameters on UAS Product Accuracy and Quality. Drones. https://doi.org/10.3390/DRONES3030063.
Sai, S., Tjahjadi, M., & Rokhmana, C. (2019). Geometric Accuracy Assessments of Orthophoto Production from UAV Aerial Images. , 333–344-333–344. https://doi.org/10.18502/keg.v4i3.5876.
Sharma, N., Bhattacharjee, S., Garg, R. D., Sharma, K., & Salim, M. (2024). Sustainable management and agriculture resource technology system using remote sensing descriptors and IoT. Geomatica, 76(2), 100040. https://doi.org/10.1016/j.geomat.2024.100040
Shendryk, Y., Sofonia, J., Garrard, R., Rist, Y., Skocaj, D., & Thorburn, P. (2020). Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. International Journal of Applied Earth Observation and Geoinformation, 92(April), 102177. https://doi.org/10.1016/j.jag.2020.102177
Sofonia, J., Shendryk, Y., Phinn, S., Roelfsema, C., Kendoul, F., & Skocaj, D. (2019). Monitoring sugarcane growth response to varying nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 82(December 2018), 101878. https://doi.org/10.1016/j.jag.2019.05.011
Swaminathan, V., Thomasson, J., Hardin, R., Rajan, N., & Raman, R. (2024). Radiometric calibration of UAV multispectral images under changing illumination conditions with a downwelling light sensor. The Plant Phenome Journal. https://doi.org/10.1002/ppj2.70005.
Sørensen, M. B., Faurdal, D., Schiesaro, G., Jensen, E. D., Jensen, M. K., & Clemmensen, L. K. H. (2025). Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data. Communications Earth and Environment, 6(1), 1–14. https://doi.org/10.1038/s43247-025-02330-0
Tan, Y., Sun, J., Zhang, B., Chen, M., Liu, Y., & Liu, X. (2019). Sensitivity of a Ratio Vegetation Index Derived from Hyperspectral Remote Sensing to the Brown Planthopper Stress on Rice Plants. Sensors (Basel, Switzerland), 19. https://doi.org/10.3390/s19020375.
van der Velden, D., Klerkx, L., Dessein, J., & Debruyne, L. (2025). Governance by satellite: Remote sensing, bureaucrats and agency in the Common Agricultural Policy of the European Union. Journal of Rural Studies, 114(January), 103558. https://doi.org/10.1016/j.jrurstud.2024.103558
W. Woldemariam, G., Gessesse Awoke, B., & Vargas Maretto, R. (2024). Remote sensing vegetation Indices-Driven models for sugarcane evapotranspiration estimation in the semiarid Ethiopian Rift Valley. ISPRS Journal of Photogrammetry and Remote Sensing, 215(June), 136–156. https://doi.org/10.1016/j.isprsjprs.2024.07.004
Wang, X., Zeng, H., Yang, X., Shu, J., Wu, Q., Que, Y., Yang, X., Yi, X., Khalil, I., & Zomaya, A. Y. (2025). Remote sensing revolutionizing agriculture: Toward a new frontier. Future Generation Computer Systems, 166(November 2024). https://doi.org/10.1016/j.future.2024.107691
Xiao, X., Qu, W., Xia, G. S., Xu, M., Shao, Z., Gong, J., & Li, D. (2025). A novel real-time matching and pose reconstruction method for low-overlap agricultural UAV images with repetitive textures. ISPRS Journal of Photogrammetry and Remote Sensing, 226(April), 54–75. https://doi.org/10.1016/j.isprsjprs.2025.05.009
Xu, L., Ming, D., Yang, X., Luo, J., Yang, J., & Zhou, C. (2024). Concept graph construction and applied research of agricultural remote sensing. International Journal of Remote Sensing, 45(13), 4428–4448. https://doi.org/10.1080/01431161.2024.2365812
Yuri, Shendryk., Jeremy, Sofonia., Robert, Garrard., Yannik, Rist., D.M., Skocaj., Peter, J., Thorburn. (2020). Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. International Journal of Applied Earth Observation and Geoinformation, 92:102177-. doi: 10.1016/J.JAG.2020.102177
Zhang, R., Zhang, J., Kuai, Y., Chen, T., & Yan, H.
(2022). Estimation of tobacco leaf chlorophyll content under different nitrogen levels using UAV-based multispectral camera. , 12349, 123491E - 123491E-11. https://doi.org/10.1117/12.2658242.
Refbacks
- There are currently no refbacks.
INDEX JOURNAL









