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ABSTRACT 
This study compares of two types of multispectral cameras, DJI Mavic 3M and MAPIR RGN, 
in assessing sugarcane health through reflectance analysis and vegetation indices. The 
research was conducted in a sugarcane plantation in Sidoarjo, East Java, using multispectral 
data captured by drones. The analysis evaluated the relationship between reflectance 
values, vegetation indices, and chlorophyll content in sugarcane. Results indicate that the 
MAPIR RGN camera outperformed the DJI Mavic 3M in measuring chlorophyll content. The 
Near Infrared (NIR) channel of MAPIR RGN showed the highest correlation with chlorophyll 
(r = 0.2166). Additionally, the Ratio Vegetation Index (RVI) from MAPIR RGN had the strongest 
correlation (r = 0.2716) among all vegetation indices. Conversely, the DJI Mavic 3M camera 
demonstrated weaker correlations across all reflectance channels and vegetation indices. 
These differences may stem from sensor sensitivity and the quality of data produced by each 
camera. Based on these findings, the MAPIR RGN camera is recommended for precision 
agriculture applications in sugarcane plantations, as it provides more accurate spectral data 
reflecting vegetation health. This study underscores the relevance of drone technology in 
enhancing the efficiency of sugarcane plantation management. 
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INTRODUCTION 
 

 

Precision agriculture has become a key strategy in 
achieving food sovereignty (Amarasingam et al., 2022). 
Remote sensing technology plays a significant role in 
supporting more efficient and effective agricultural land 
management (Wang et al., 2025). This technological 
advancement offers potential solutions for improving the 
management of agricultural areas (Mpakairi et al., 2025; 
van der Velden et al., 2025). Among agricultural 
commodities, sugarcane holds substantial importance 
as a primary source of sugar (Dimov et al., 2022). Sugar is 
considered a staple food component crucial to human 
livelihood, and most countries regulate its availability to 
meet national consumption demands. In Indonesia, the 
total area allocated to sugarcane plantations has shown 
a consistent upward trend over the past decade. 
However, this expansion has not been accompanied by a 
proportional increase in productivity. Several factors 
contribute to this discrepancy, including limited 
implementation of modern management technologies in 
sugarcane plantations, labor shortages, climatic 
constraints, and the outdated infrastructure of most 
sugar mills in the country. 

According to data presented at the National 
Summit on Sugar held on December 13, 2023, the area of 
sugarcane plantations has continued to grow over the 
past ten years. By 2022, sugarcane plantations in 
Indonesia spanned approximately 490,000 hectares, and 
the area was projected to increase to 505,000 hectares by 
2023. Ironically, this increase in plantation area has not 
resulted in a corresponding rise in sugar production, 
which is largely attributed to the declining quality of 
harvested sugarcane. This quality deterioration is 
believed to stem from suboptimal plantation 
management practices. 

Remote sensing technology has been proven to 
assist in land management (Sharma et al., 2024; Xu et al., 
2024), including the monitoring of sugarcane agricultural 
fields. Remote sensing enables spatial distribution 
mapping and reduces the need for labor-intensive and 
time-consuming field data collection, which typically 
requires greater financial and human resources (Karongo 
et al., 2025; Orynbaikyzy et al., 2019; Sørensen et al., 
2025). Satellite imagery, the most commonly used 
remote sensing data, provides a combination of various 
spatial and spectral resolutions and allows for 
computational data extraction and analysis (Damm et al., 
2022). However, satellite imagery often lacks the spatial 
resolution required to capture fine-scale variations in 

sugarcane fields, particularly those with small plot sizes. 
Therefore, higher-resolution remote sensing data with 
rich spectral information suitable for digital processing 
are needed (Xiao et al., 2025). 

Unmanned aerial vehicles (UAVs), or drones, offer 
a viable solution by generating high spatial resolution 
imagery (digital aerial photography), capable of achieving 
resolutions at the millimeter scale (Sofonia et al., 2019). 
Currently, many UAV systems are equipped with 
advanced digital cameras capable of capturing 
multispectral imagery (Ebrahimy et al., 2025). Examples 
include the MAPIR RGN camera and the multispectral 
sensor integrated with the DJI Mavic 3M UAV, both of 
which are commonly utilized for mapping purposes. The 
diversity of drone-mounted cameras produces a range of 
imagery with different spectral bands and capture ranges, 
which may result in varied or sometimes overlapping 
datasets. Given this variability, it is essential to examine 
the specifications and characteristics of UAV imagery to 
provide users with informed recommendations regarding 
camera selection and field data acquisition strategies, 
ensuring optimal data utilization in subsequent 
applications. 

Multispectral reflectance data captured by UAV-
mounted cameras plays a crucial role in assessing 
chlorophyll content, a primary indicator of plant health 
(Das et al., 2023; Gao et al., 2024). Chlorophyll is an 
integral component of photosynthesis and has a direct 
influence on plant growth, vigor, and productivity 
(Woldemariam et al., 2024). Its presence is strongly 
correlated with leaf coloration, canopy density, and 
photosynthetic efficiency (Pierre Pott et al., 2022). 
Chlorophyll predominantly absorbs light in the red and 
blue wavelengths, while reflecting green and near-
infrared (NIR) light (Bagheri & Kafashan, 2025). 
Multispectral cameras are capable of detecting this 
spectral variance, allowing for the estimation of 
chlorophyll content through vegetation indices (Ochiai et 
al., 2024) such as the Normalized Difference Vegetation 
Index (NDVI), Green NDVI (GNDVI), and the Modified 
Chlorophyll Absorption Ratio Index (MCARI) (Hofmann, 
2023). 

Chlorophyll monitoring is particularly critical in 
sugarcane cultivation, as it directly affects 
photosynthetic performance and serves as a proxy for 
plant health (Jay et al., 2017). Remote sensing data 
acquired via multispectral cameras enable efficient 
chlorophyll assessments using indices such as the 
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Chlorophyll Index–Red Edge (ClRE) and GNDVI. These 
indices have shown strong correlations with key 
sugarcane parameters such as biomass, yield, and 
disease resistance (Saengprachatanarug et al., 2022; 
Shendryk et al., 2020). Spectral vegetation indices such 
as the Ratio Vegetation Index (RVI) and the Difference 
Vegetation Index (DVI) have demonstrated high 
coefficients of determination (R²), reaching values 
between 0.94 and 0.96, making them highly reliable for 
chlorophyll estimation in sugarcane (Narmilan et al., 
2022). 

This study aims to compare the spectral data 
output from two distinct UAV-compatible cameras—the 
multispectral sensor of the DJI Mavic 3M and the MAPIR 
RGN camera—to determine their respective capabilities 
in providing vegetation indices for supporting precision 
agriculture in sugarcane cultivation. Recent studies have 
highlighted that multispectral cameras, such as those 
integrated into the DJI Mavic 3M platform, can deliver 
high-accuracy vegetation data with notable efficiency for 
crop monitoring. In contrast, red-green-NIR cameras like 
the MAPIR RGN remain widely used due to their 
affordability and customizable spectral configurations. 
However, direct performance comparisons between 
these camera systems in the context of specific crops like 
sugarcane remain limited. Therefore, this research 
occupies a strategic position in addressing this 
knowledge gap within the field of remote sensing-based 
precision agriculture.  

METHOD 
The method of collecting aerial photo data used in 

this study is to conduct aerial photography directly on 
sugarcane plantation land, using 2 different cameras 
(MAPIR RGN Camera and DJI Mavic 3M Multispectral 
Camera) which are transported using unmanned aerial 
vehicles. 

 
Research Location 

The location of the research was carried out in a 
sugarcane plantation in the Sidoarjo Regency area, East 
Java Province, precisely in Urangagung Village, Sidoarjo 
District. Sidoarjo is an area that has a fairly large 
sugarcane plantation on the island of Java, so it is 
considered to be able to present sugarcane plantations in 
the Java Island area. The location can be seen in detail in 
the following map image, where the research area is 
focused on sugarcane plantation plots with an area of +1 
Ha. The research area was adjusted to the capabilities of 
the camera for photography and the diversity of 
sugarcane plants with several different treatment plots in 
terms of fertilization. With different treatments, it is 
expected to provide a diversity of diverse spectral 
responses to be covered through unmanned aircraft 
cameras. 

 

 

 
 
Figure 1. Research Location, Sugarcane Plantation, Urangagung, Sidoarjo, East Java Province (7°26'16.6"S 
112°39'53.7"E) 
Source: Analysis results 
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Figure 2. Unmanned Aircraft and Cameras 
 
Table 1. Parameters of MAPIR RGN Camera and DJI Mavic 3M Multispectral Camera 

Sensor Camera Spectral Range (nm)/Middle Wavelength 
(channel width) (nm) 

Resolution 
(pixels) 

GSD@120(cm) 

Mavic 3M 
(Multispectral 
Camera) 

Green (G): 560 ± 16 nm; 
Red (R): 650 ± 16 nm; 
Red Edge (RE): 730 ± 16 nm; 
Near infrared (NIR): 860 ± 26 nm 

2592 × 1944 6.4 

MAPIR RGN Green (G): 550±15nm;  
Red(R): 660±15nm; 
Near Infrared (NIR): 850±30nm 

4,000 x 3,000 2.3 

Source: www.mapir.camera dan www.ag.dji.com 
 
Tools and Materials 
The equipment used in this study is the DJI PHANTOM 
Drone used to transport the MAPIR RGN Camera and 
the DJI MAVIC 3M Unmanned Aircraft, as well as the 
Geodetic GNSS Receiver for the tying of the position of 
the Ground Control Point (GCP) in the field. Here are 
the parameters of the MAPIR RGN camera and the DJI 
Mavic 3M Multispectral Camera (see Table 1) 
 
Field Data Acquisition 

The MAPIR RGN camera is equipped with a 
mounting to be installed on the DJI Phantom. When 
shooting in the research area was carried out 
alternately with a flying altitude of +100 m, at first the 
DJI Mavic 3M was shot first, then continued with the 
MAPIR RGN camera shot carried by DJI Phantom. 
Before the shooting, a Ground Control Point was 
installed as a binding point to make geometry 
corrections on the aerial photos from the shooting.  

The shooting process was carried out to make a 
flight path plan by determining the coverage area / 
Area of interest (AOI) which was then included in the 
Flight Mission on the control of the unmanned aircraft, 
along with other parameters such as Flight Path 

(waypoint and flight path), Altitude (flight altitude), 
Overlap (image overlap level), Gimbal Angles (camera 
angle), Speed: (flight speed), Return to Home and 
Method (RTK/PPK). 

Before the flight, it is necessary to calibrate the 
platform and camera sensors. The most important 
thing related to this study is the calibration of 
reflections using the Micasense Calibrated 
Reflectance Panel (CRP) RP06-2123093-OB. 
Reflectance calibration helps to normalize the data so 
that the analysis results become consistent across 
various environmental conditions (Swaminathan et 
al., 2024). The calibration data using the reflectant 
calibration panel is used for the radiometric correction 
process on aerial photons during data processing after 
data acquisition in the field. 

For the purpose of compiling an aerial photo 
mosaic into an orthophoto, it is necessary to make a 
geometry correction that requires field control point 
data in the form of Ground Control Point (GCP) and 
Independ Contorl Point (ICP) to assess the validation 
of the results of the orthorectification process. These 
points were measured using a Geodetic-type GNSS 
receiver, by pairing markers in the field. 

http://www.ag.dji.com/
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The process of mosaic preparation and 
orthorectification uses agisoft metashape software, 
the orthorectification process is carried out by utilizing 
the Structure from Motion (SfM) technique to produce 
a digital surface model (DSM) used in geometric 
correction. Orthorectification corrects distortions due 
to differences in surface height and camera angles, 

allowing for more accurate analysis of geospatial 
maps (Sai et al., 2019). By integrating Ground Control 
Points (GCP) and SfM algorithms, Agisoft produces 
orthophoto mosaics with high resolution and 
geometric accuracy that meet standards (Pricope et 
al., 2019).

 
Figure 3.  Micasense Calibrated Reflectance Panel (CRP) RP06-2123093-OB 
Source: Analysis results 
 
Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index 
(NDVI) is a widely used formula in remote sensing to 
monitor vegetation health, growth, and density. This index 
is calculated using the reflectance values of the red 
channel (RED) and near-infrared (NIR) spectrum of the 
electromagnetic spectrum. NDVI is expressed by the 
following formula: 

NDVI = 𝑁𝐼𝑅 −𝑅

𝑁𝐼𝑅+𝑅
 

 

This index effectively distinguishes between 
healthy vegetation, which is higher in the NIR and less in 
the RED, and areas that are not vegetated or unhealthy. 
NDVI values range from -1 to 1, where higher values (close 
to 1) indicate healthy, dense vegetation, and lower values 
indicate barren or sparsely overgrown lands. 

NDVI is the most popular index for vegetation 
assessment due to its flexibility with any multispectral 
sensor. They discuss its widespread use in Unmanned 
Aerial System (UAS) applications while addressing 
potential limitations such as atmospheric effects and 
sensor inconsistencies (Huang et al., 2020). The 
application of NDVI in precision agriculture uses UAV-
based multispectral cameras. has been conducted by 
Deng et al., 2018 in the study compared the accuracy of 
NDVI in various cameras and highlighted its role in 
monitoring plant health under various conditions [(Deng 
et al., 2018)] 

 

Ratio Vegetation Index (RVI)  
RVI is a vegetation index used in remote sensing to 

monitor vegetation health and density. This index 
calculates the ratio between reflections in the near-
infrared (NIR) and red (RED) spectrum bands. The 
formula used is as follows: 

RVI = 𝑁𝐼𝑅
𝑅𝑒𝑑

 
RVI is effective in distinguishing between 

vegetated and non-vegetated areas, as vegetation is more 
reflected in the NIR than in the red spectrum (RED). This 
simplicity makes RVI a practical tool, although it is less 
sensitive to high biomass areas compared to other 
indices such as NDVI. The correlation of RVI with SAR 
data, shows its potential in crop monitoring even under 
cloud cover conditions (Álvarez-Mozos et al., 2021) 

 
Green Normalized Difference Vegetation Index  
(GNDVI) 

The Green Normalized Difference Vegetation Index 
(GNDVI) is a vegetation index used in remote sensing to 
assess plant health and chlorophyll content. This index is 
a modification of the Normalized Difference Vegetation 
Index (NDVI), which replaces the red ribbon with the 
green ribbon in its calculation. The formula used is as 
follows: 

GNDVI = 𝑁𝐼𝑅 −𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
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Candiago et al. (2015) explored the application of 
GNDVI using multispectral imagery obtained by UAVs for 
precision agriculture. This study emphasizes the 
effectiveness of GNDVI in analyzing the health, strength, 
and productivity levels of vegetation or plants (Candiago 
et al., 2015) 

 
Comparison through Correlation Analysis 

Correlation analysis is a statistical method used to 
measure the strength and direction of the relationship 
between two variables. In the context of this study, 
correlation analysis was used to evaluate the relationship 
between the reflectance values of the multispectral 
cameras (MAPIR RGN and DJI Mavic 3M) and also their 
derivatives (Vegetation Index) with chlorophyll levels 
measured directly in the field. The correlation between 
reflectance values and chlorophyll levels allows 
validation of whether data from multispectral cameras 
can be used to accurately predict/detect plant health 
(Zhang et al., 2022). Through a comparison study of two 
multispectral cameras it is possible to determine which 
sensor is more effective for a particular application 
(Olivetti et al., 2023). 

RESULTS AND DISCUSSION 
 
Based on table 1. The parameter data of the MAPIR RGN 
Camera and the Multispectral Camera on the DJI Mavic 
3M, has a difference where the Mavic 3M has 4 channels, 
namely Green Channel, Red Channel, RedEdge Channel, 
and Near Infra Red Channel while MAPIR RGN has 3 
Channels, namely Green Channel, Red Channel and Near 
Infra Red Channel. Related to the spectral range on each 
of the same channels is 10 nm adrift on each channel and 
the range is 1 nm apart. The difference in pixel resolution 
on the camera also causes a difference in Ground 
Sampling Distance (GSD), where in the example at a flying 
altitude of 120 m, the DJI Mavic 3M has a GSD of 6.4 cm 
and the MAPIR RGN has a GSD of 2.3.cm, thus the MAPIR 
RGN camera has a better spatial resolution compared to 
the DJI Mavic 3M Multispectral camera. 
The results of the mosaic and orthorectification process 
from the shooting of both types of cameras, are presented 
in the following image: 
 

 

Figure 4. Orthophoto on multispectral camera compared to RGB Photo (left) DJI RGB Camera Color Aerial Photo; 
(Middle) Color Infrared Aerial Photo of DJI Mavic 3M Multispectral Camera and (right) Color Infrared Aerial Photo of 
MAPIR RGN Camera.
 
In addition to taking pictures, sample data was also taken 
in the field to be used as a calculation of chlorophyll. Field 
samples were carried out in a total of 15 sample points, 
with the distribution of sample points as shown in figure 
5. The sampling method is Stratified Random Sampling 
according to the treatment class on sugarcane plants. 

The retrieval of reflectant pixel values on Orthophoto is 
based on sampling points in the field whose location is 
measured using a Geodetic GNSS Receiver. The samples 
taken are in the form of leaves on sugarcane plants, which 
will then be measured in the laboratory. 
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Figure 4. Map of Distribution of samples in the field 

 
From the results of orthophoto, reflective data 

was collected for each channel contained in the two types 
of cameras, namely the GREEN, RED, NIR channels. The 
RedEdge channel on the DJI Mavic 3M multispectral 
camera is not used as a comparison because the MAPIR 
RGN camera does not produce the same channel. This is 
done in order to have equality in the comparison of the 
reflection of each channel, as well as the derivatives in 
the vegetation index used. The reflective sample data 
used was in accordance with the sample distribution in 
the measurement of chlorophyll samples in the layer. The 
following is the data for each type of camera. 

Chlorophyll comes from the MAPIR RGN camera, 
which is an NIR (Near Infrared) channel, with a correlation 
value of 0.2166. These channels show a positive 
relationship between the reflectance values at the near-
infrared wavelength and the chlorophyll values measured 
in the field. This correlation indicates that increased 
reflectance in NIR channels is related to increased 
chlorophyll levels, although the correlation is not very 
strong. The reflections of the Green Channel and the Red 
channel of the two cameras showed a weaker correlation. 

This is in line with the theory that NIR channels are more 
sensitive to light reflections from healthy leaves because 
chlorophyll absorbs more light in the green and red 
channels. The DJI Mavic 3M's multispectral camera, 
despite having high sensitivity, does not show significant 
correlation across all its reflection channels, including 
NIR. This may be due to differences in sensor quality or 
data processing settings in the camera. 

Based on the correlation analysis between 
chlorophyll values and vegetation index, the vegetation 
index with the highest correlation was RVI (Ratio 
Vegetation Index) from the MAPIR RGN camera, with a 
correlation value of 0.2716. This shows that the RVI from 
MAPIR RGN has the strongest relationship compared to 
other vegetation indices, both from MAPIR RGN and DJI 
Mavic 3M. 

RVI is a simple index that calculates the ratio 
between NIR reflectance and red reflectance. This index 
has a high sensitivity to changes in plant conditions, 
especially in health levels and chlorophyll levels. The 
positive correlation showed that the higher the RRI value, 
the higher the chlorophyll level measured. 
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Meanwhile, other vegetation indices such as NDVI 
(Normalized Difference Vegetation Index) and GNDVI 
(Green NDVI) from MAPIR RGN show a slightly lower 
correlation than RVI, although still significant. For the DJI 
Mavic 3M camera, all vegetation indices showed a weaker 
correlation compared to the MAPIR RGN, which is most 
likely due to different sensor sensitivities or the influence 
of environmental conditions during shooting. 

Based on the comprehensive analysis of the data, 
a pronounced and noteworthy difference was observed 
between the DJI Mavic 3M multispectral camera and the 
MAPIR RGN camera in terms of their respective 
capabilities in capturing the relationship between 
spectral reflectance and vegetation indices with 
chlorophyll content in sugarcane crops. These 
differences are manifested in several key aspects, 
including the sensitivity and spectral responsiveness of 
specific reflectance channels, the precision and 
reliability of the derived vegetation indices, as well as the 
overall strength of the statistical correlation with 
measured chlorophyll concentrations. This suggests that 
each camera exhibits distinct performance 
characteristics that may influence their suitability and 
effectiveness for chlorophyll estimation and broader 

applications in precision agriculture monitoring for 
sugarcane. 

 
1.  Reflectan 

MAPIR RGN cameras show better performance in 
terms of reflection correlation with chlorophyll, 
especially in NIR (Near Infrared) channels with a 
correlation of 0.2166. NIR has a high sensitivity to 
vegetation health due to its strong reflective properties on 
leaves with high chlorophyll content. In contrast, the 
reflections from the DJI Mavic 3M's multispectral camera, 
including its NIR channels, show a weak correlation with 
chlorophyll. This can be due to differences in sensor 
quality or data processing levels between the two 
cameras. 

 
2.  Vegetation Index 

The vegetation index of the MAPIR RGN camera, 
such as RVI (0.2716), has the highest correlation with 
chlorophyll compared to all other indices, including those 
derived from the DJI Mavic 3M multispectral camera. This 
indicates that the MAPIR RGN camera is superior in 
producing spectral data that is relevant for vegetation 
analysis. 

 
 

Table 2. Chlorophyll, Reflectance, and Vegetation Index Data on DJI Mavic 3M multispectral camera 

Sample CHLOROPHYLL Green_DJI Red_DJI RedEdge_DJI NIR_DJI NDVI_DJI RVI_DJI GNDVI_DJI  
1 1.138 0.0691 0.0349 0.3086 0.3652 0.8256 10.4689 0.6817  
2 1.159 0.0671 0.0571 0.1685 0.2047 0.5640 3.5866 0.5060  
3 1.227 0.0542 0.0378 0.1626 0.2802 0.7623 7.4152 0.6759  
4 1.081 0.1429 0.0799 0.3322 0.4034 0.6693 5.0473 0.4767  
5 1.232 0.0560 0.0378 0.1610 0.1757 0.6458 4.6473 0.5167  
6 1.130 0.0272 0.0163 0.0859 0.1436 0.7958 8.7925 0.6812  
7 1.193 0.0823 0.0483 0.2418 0.2832 0.7087 5.8660 0.5495  
8 1.070 0.0692 0.0400 0.2093 0.2639 0.7367 6.5950 0.5845  
9 1.090 0.1329 0.0731 0.3550 0.5384 0.7608 7.3627 0.6039  

10 1.141 0.0732 0.0501 0.2217 0.2659 0.6827 5.3037 0.5681  
11 1.129 0.0601 0.0327 0.1404 0.1883 0.7041 5.7600 0.5159  
12 1.156 0.0478 0.0224 0.1786 0.3107 0.8657 13.8909 0.7333  
13 1.045 0.0656 0.0371 0.2355 0.2882 0.7719 7.7673 0.6290  
14 1.160 0.0935 0.0454 0.2456 0.2713 0.7131 5.9711 0.4873  
15 1.203 0.1217 0.0708 0.3198 0.4684 0.7375 6.6192 0.5875  

Source : Research results, 2024 
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Table 3.  Chlorophyll, Reflectance, and Vegetation Index Data on Mair RGN multispectral cameras 
 

Sample CHLOROPHYLL MAPIR_NIR MAPIR_Red MAPIR_Green NDVI_MAPIR RVI_MAPIR GNDVI_MAPIR 

1 1.138 1.29736 0.21945 0.09335 0.71064 5.91183 0.86575 

2 1.159 1.14850 0.21472 0.04703 0.68498 5.34878 0.92133 

3 1.227 1.53769 0.17578 0.08151 0.79482 8.74774 0.89932 

4 1.081 1.09351 0.22659 0.11996 0.65670 4.82586 0.80228 

5 1.232 1.16562 0.22867 0.07724 0.67199 5.09742 0.87571 

6 1.130 1.46701 0.21225 0.06265 0.74721 6.91172 0.91808 

7 1.193 1.22296 0.23230 0.09277 0.68074 5.26458 0.85898 

8 1.070 1.18665 0.21378 0.07532 0.69470 5.55089 0.88063 

9 1.090 1.48486 0.20764 0.09656 0.75463 7.15109 0.87788 

10 1.141 1.27164 0.26184 0.10565 0.65850 4.85653 0.84658 

11 1.129 1.06268 0.19510 0.10434 0.68977 5.44690 0.82119 

12 1.156 1.45633 0.17926 0.08188 0.78080 8.12411 0.89354 

13 1.045 1.22919 0.22202 0.06430 0.69403 5.53649 0.90058 

14 1.160 0.92554 0.20633 0.07492 0.63542 4.48573 0.85023 

15 1.203 1.54388 0.21066 0.08771 0.75987 7.32870 0.89249 

Source: Research results, 2024 
 

Table 4. Analysis of correlation results 
 

No Variable Correlation Regression Equation R-squared 

1 DJI_Green -0.21715977 KLOROFIL = 1.1727 + -0.3754 * DJI_Green 0.047158 

2 DJI_Red -0.110050839 KLOROFIL = 1.1590 + -0.3391 * DJI_Red 0.012111 

3 DJI_NIR -0.200309179 KLOROFIL = 1.1742 + -0.1032 * DJI_NIR 0.040124 

4 DJI_NDVI -0.167657805 KLOROFIL = 1.2356 + -0.1261 * DJI_NDVI 0.028109 

5 DJI_RVI -0.097883004 KLOROFIL = 1.1586 + -0.0021 * DJI_RVI 0.009581 

6 DJI_GNDVI -0.004990562 KLOROFIL = 1.1456 + -0.0035 * DJI_GNDVI 2.49E-05 

7 MAPIR_Green -0.090770334 KLOROFIL = 1.1664 + -0.2710 * MAPIR_Green 0.008239 

8 MAPIR_Red -0.172202404 KLOROFIL = 1.2414 + -0.4576 * MAPIR_Red 0.029654 

9 MAPIR_NIR 0.216581501 KLOROFIL = 1.0615 + 0.0645 * MAPIR_NIR 0.046908 

10 MAPIR_NDVI 0.214652567 KLOROFIL = 0.9678 + 0.2483 * MAPIR_NDVI 0.046076 

11 MAPIR_RVI 0.271581826 KLOROFIL = 1.0725 + 0.0118 * MAPIR_RVI 0.073757 

12 MAPIR_GNDVI 0.176362202 KLOROFIL = 0.8870 + 0.2937 * MAPIR_GNDVI 0.031104 

Source: Research results, 2024 
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CONCLUSION 
 
Based on data analysis in reflection and 

vegetation index research, the MAPIR RGN camera is 
proven to be superior to the DJI Mavic 3M multispectral 
camera for detecting sugarcane vegetation. This is based 
on the higher correlation values between reflectant 
values, vegetation index, and chlorophyll in the MAPIR 
RGN camera. The NIR channel of MAPIR RGN has the 
highest correlation with chlorophyll (0.2166), while in 
terms of vegetation index, RVI MAPIR RGN shows the best 
correlation (0.2716). These two results confirm that the 
MAPIR RGN camera has a better sensitivity to spectral 
variations that reflect chlorophyll levels and plant health. 

In contrast, the DJI Mavic 3M camera showed a 
lower correlation for all reflectance channels and 
vegetation index. This shows that the MAPIR RGN sensor 
is more optimal in detecting spectral reflections, 
particularly in NIR channels, which is very relevant for 
plant health analysis. The MAPIR RGN camera is more 
recommended for research on detecting sugarcane 
plants because it shows a stronger relationship with 
chlorophyll variables, both through reflection and 
vegetation index. However, this study has a number of 
limitations that need to be considered. Limited coverage 
of the observation area as well as a relatively small 
sample count can affect the generalization of results. In 
addition, external factors such as lighting conditions, 
shooting angles, and sensor calibration can affect the 
quality of the data obtained. Further research is 
suggested to conduct comparative tests with a wider 
spatial and temporal scope, and involve different types of 
plants and different environmental conditions to obtain 
more comprehensive results. In addition, the integration 
of data with other environmental parameters such as soil 
moisture, soil characteristics, and climate information, 
as well as the use of artificial intelligence-based image 
analysis methods or machine learning, can improve the 
accuracy and relevance of findings in supporting the 
implementation of precision agriculture. 
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